PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 2011-2012.

Opción A

Ejercicio 1, Opción A, Modelo 6 de 2012.

[2'5 puntos] Se considera la función derivable f : R \rightarrow R definida por f(x) = $\begin{cases} 1 + \frac{a}{x-2} & \text{si} \quad x < 1 \\ a + \frac{b}{\sqrt{x}} & \text{si} \quad x \ge 1 \end{cases}$

Calcula los valores de a y b.

Solución

Si f es derivable, f es continua; en particular es continua y derivable en x = 1

$$f(x) = \begin{cases} 1 + \frac{a}{x-2} & \text{si} \quad x < 1 \\ a + \frac{b}{\sqrt{x}} & \text{si} \quad x \ge 1 \end{cases} \qquad f'(x) = \begin{cases} \frac{-a}{(x-2)^2} & \text{si} \quad x < 1 \\ \frac{-b}{2\sqrt{x} \cdot (\sqrt{x})^2} & \text{si} \quad x \ge 1 \end{cases} = \begin{cases} \frac{-a}{(x-2)^2} & \text{si} \quad x < 1 \\ \frac{-b}{2x\sqrt{x}} & \text{si} \quad x \ge 1 \end{cases}$$

Como f es continua en x = 1, $f(1) = \lim_{x \to 1} f(x)$

$$f(1) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \left(a + \frac{b}{\sqrt{x}} \right) = a + b$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left(1 + \frac{a}{x-2} \right) = 1 - a. \text{ Igualando } a + b = 1 - a, \text{ de donde } 2a + b = 1.$$

Como f es derivable en x = 1, $f'(1^+) = f'(1^-)$. Vemos la continuidad de la derivada.

$$f'(1^+) = \lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} \left(\frac{-b}{2x\sqrt{x}} \right) = -b/2$$

$$f'(1) = \lim_{x \to 1} f'(x) = \lim_{x \to 1} \left(\frac{-a}{(x-2)^2} \right) = -a$$
. Igualando $-a = -b/2$, de donde $b = 2a$.

b = 2a, de donde $2a + 2a = 4a = 1 \rightarrow a = 1/4 \ y \ b = 1/2$.

Ejercicio 2, Opción A, Modelo 6 de 2012.

[2'5 puntos] Sea la función f : $R \to R$ definida por $f(x) = (1 - x^2)e^{-x}$. Determina la primitiva de f cuya gráfica pasa por el punto (-1, 0).

Solución

Una primitiva de $f(x) = (1 - x^2)e^{-x}$ es $F(x) = I = \int (1 - x^2)e^{-x}dx = \{\text{Integral por partes por partes } \int udv = uv - \int vdz$. En nuestro caso $u = 1 - x^2$ y $dv = e^{-x}dx$, de donde du = -2xdx y $v = \int dv = \int e^{-x} = -e^{-x}$ $\} = (1 - x^2)(-e^{-x}) - \int -e^{-x}(-2xdx) = -(1 - x^2)e^{-x} - 2\int xe^{-x} = -(1 - x^2)e^{-x} - 2I_1$

 $I_1 = \int xe^{-x}dx = \{Integral\ por\ partes\ por\ partes\ ,\ en\ nuestro\ caso\ u = x\ y\ dv = e^{-x}dx\ ,\ de\ donde\ du = dx\ y\ v = -e^{-x}\} = -x\cdot e^{-x} - \int -e^{-x}dx = -x\cdot e^{-x} + \int e^{-x}dx = -x\cdot e^{-x} - e^{-x},\ por\ tanto$

$$F(x) = I = \int (1 - x^2)e^{-x}dx = -(1 - x^2)e^{-x} - 2I_1 = -(1 - x^2)e^{-x} - 2(-x \cdot e^{-x} - e^{-x}) + K = e^{-x}(x^2 + 2x + 1) + K$$

Como pasa por (-1,0), F(-1) = 0 \rightarrow e(1 - 2 +1) + K = 0 = 0 + K = 0, de donde K = 0 y la primitiva pedida es F(x) = $e^{-x}(x^2 + 2x + 1)$

Ejercicio 3, Opción A, Modelo 6 de 2012.

Un estudiante ha gastado 57 euros en una papelería por la compra de un libro, una calculadora y un estuche. Sabemos que el libro cuesta el doble que el total de la calculadora y el estuche juntos.

- (a) [1'25 puntos] ¿Es posible determinar de forma única el precio del libro? ¿Y el de la calculadora? Razona las respuestas.
- (b) [1'25 puntos] Si el precio del libro, la calculadora y el estuche hubieran sufrido un 50 %, un 20% y un 25% de descuento respectivamente, el estudiante habría pagado un total de 34 euros. Calcula el precio de cada artículo.

Solución

Un estudiante ha gastado 57 euros en una papelería por la compra de un libro, una calculadora y un estuche

Traducción x + v + z = 57€.

Sabemos que el libro cuesta el doble que el total de la calculadora y el estuche juntos.

Traducción x = 2(v + z)

(a)

¿Es posible determinar de forma única el precio del libro? ¿Y el de la calculadora? Razona las respuestas. Como tenemos dos ecuaciones y tres incógnitas

$$x + v + z = 57 \in$$
.

x = 2(y + z), tenemos un sistema compatible e indeterminado que tiene infinitas soluciones.

Juan Carlos Schiemann Correia, me envío la solución de que si se puede saber el precio del libro pero nó el de la calculadora:

De x = 2(y + z), tenemos x/2 = y + z, y entrando en la 1ª ecuación resulta x + x/2 = 57, de dónde 3x/2 = 57 y nos sale x = 38€.

(b)

Si el precio del libro, la calculadora y el estuche hubieran sufrido un 50 %, un 20% y un 25% de descuento respectivamente, el estudiante habría pagado un total de 34 euros. Calcula el precio de cada artículo.

Traducción 0'5x + 0'8y + 0'75z = 34 €

Sustituimos x = 2(y + z), en las otras dos ecuaciones:

$$2(y + z) + y + z = 57$$
 \rightarrow $3y + 3z = 57 \rightarrow $y + z = 19 \rightarrow y = 19 - z$$

$$0.5$$
· $2(y + z) + 0.8y + 0.75z = 34 → 1.8y + 1.75z = 34 → 1.8(19 - z) + 1.75z = 34 → 34.2 - 0.05z) = 34, de donde $z = 4 \in$, $y = 19 - 4 = 15 \in$ $y = x = 2(19) = 38 \in$.$

Luego un libro vale x = 38 €, una calculadora y = 15 € y un estuche z = 4 €.

Ejercicio 4, Opción A, Modelo 6 de 2012.

[2'5 puntos] Determina el punto P de la recta r = (x+3)/2 = (y+5)/3 = (z+4)/3 que equidista del origen de coordenadas y del punto A(3, 2, 1).

Solución

Ponemos la recta en paramétricas $r = (x+3)/2 = (y+5)/3 = (z+4)/3 = \lambda \in R$, de donde

 $x = -3 + 2\lambda$

 $y = -5 + 3\lambda$

 $z = -4 + 3\lambda$.

Un punto genérico de la recta "r" es $P(x,y,z) = P(-3 + 2\lambda, -5 + 3\lambda, -4 + 3\lambda)$.

Me dicen que d(O,P) = d(A,P), es decir $||\mathbf{OP}|| = ||\mathbf{AP}||$

$$\mathbf{OP} = (-3 + 2\lambda, -5 + 3\lambda, -4 + 3\lambda) \rightarrow ||\mathbf{OX}|| = \sqrt{(-3 + 2\lambda)^2 + (-5 + 3\lambda)^2 + (-4 + 3\lambda)^2} = \sqrt{22\lambda^2 - 66\lambda + 50}$$

$$\mathbf{AP} = (-3 + 2\lambda - 3, -5 + 3\lambda - 2, -4 + 3\lambda - 1) = (-6 + 2\lambda, -7 + 3\lambda, -5 + 3\lambda)$$

$$\rightarrow ||\mathbf{AP}|| = \sqrt{(-6+2\lambda)^2 + (-7+3\lambda)^2 + (-5+3\lambda)^2} = \sqrt{22\lambda^2 - 96\lambda + 110} \ .$$

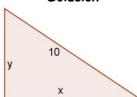
Igualando y elevando al cuadrado tenemos $22\lambda^2 - 66\lambda + 50 = 22\lambda^2 - 96\lambda + 110 \rightarrow 30\lambda = 60$, de donde tenemos $\lambda = 2$, y **el punto es** P(-3 + 2(2), -5 + 3(2), -4 + 3(2)) = **P(1, 1, 2)**.

Opción B

Ejercicio 1, Opción B, Modelo 6 de 2012.

[2'5 puntos] De entre todos los triángulos rectángulos de hipotenusa 10 unidades, determina las dimensiones del de área máxima.

Solución



Función a optimizar = Área = (1/2)xy

Relación $y^2 + x^2 = 10^2$, de donde $y = \sqrt{100 - x^2}$, es (+) puesto que es una longitud.

Mi función es A(x) = $(1/2)x \cdot \sqrt{100 - x^2}$

El máximo anula la 1ª derivada A'(x)

A'(x) =
$$(1/2) \cdot \sqrt{100 - x^2} + (1/2)x \cdot \frac{-2x}{2\sqrt{100 - x^2}} = \frac{100 - x^2 - x^2}{2\sqrt{100 - x^2}} = \frac{50 - x^2}{\sqrt{100 - x^2}}$$

De A'(x) = 0, tenemos $50 - x^2 = 0$, de donde $x = +\sqrt{50}$, pues es una longitud.

Las dimensiones del triángulo son x = $+\sqrt{50}$ e y = $\sqrt{100 - \left(\sqrt{50}\right)^2} = \sqrt{50}$, luego es un triángulo isósceles.

Veamos que es un máximo, es decir A($\sqrt{50}$) < 0.

$$A'(x) = \frac{50 - x^2}{\sqrt{100 - x^2}}$$

$$A''(x) = \frac{-2x \cdot \sqrt{100 - x^2} - (100 - x^2) \cdot (\sqrt{100 - x^2})}{(\sqrt{100 - x^2})^2}$$

A"(
$$\sqrt{50}$$
) = $\frac{-2\sqrt{50}\cdot\sqrt{50}-(0)\cdot(\sqrt{100-x^2})^{\cdot}}{(+)}$ < 0, luego es máximo.

Ejercicio 2, Opción B, Modelo 6 de 2012.

Sean las funciones $f: R \to R$ y $g: [0; +\infty) \to R$ definidas por $f(x) = x^2/4$ y $g(x) = 2 \cdot \sqrt{x}$ respectivamente. (a) [0'75 puntos] Halla los puntos de corte de las gráficas de f y g. Realiza un esbozo del recinto que limitan.

(b) [1'75 puntos] Calcula el área de dicho recinto.

Solución

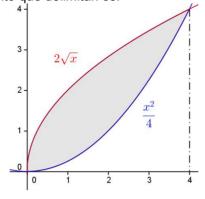
Sean las funciones $f: R \to R$ y $g: [0; +\infty) \to R$ definidas por $f(x) = x^2/4$ y $g(x) = 2 \cdot \sqrt{x}$ respectivamente. (a)

Halla los puntos de corte de las gráficas de f y g. Realiza un esbozo del recinto que limitan.

La gráfica de $f(x) = x^2/4$ es parecida a la de x^2 (vértice (0,0), ramas hacia arriba), pero un poco más abierta pues para x = 1 vale 1/4.

La gráfica de $g(x) = 2 \cdot \sqrt{x}$ es parecida a la de $g(x) = 2 \cdot \sqrt{x}$ (también es una parábola, pero horizontal en este caso), pero un poco más alargada pues para x = 1 vale 2.

Los corte los calculamos resolviendo la ecuación f(x) = g(x), es decir $x^2/4 = 2 \cdot \sqrt{x}$. Elevando al cuadrado tenemos $x^4/16 = 4x$, luego $x^4 = 64x \rightarrow x^4 - 64x = x(x^3 - 64) = 0$, de donde x = 0 y $x = \sqrt[3]{64} = 4$ Un esbozo de sus gráficas y del recinto que delimitan es:



(b) Calcula el área de dicho recinto.

Área =
$$\int_0^4 \left[(2\sqrt{x}) - (x^2/4) \right] dx + \int_0^4 \left[(2x^{1/2}) - (x^2/4) \right] dx = \left[2x^{1/2+1}/(1/2+1) - x^3/12 \right]_0^4 = \left[\frac{4\sqrt{x^3}}{3} - x^3/12 \right]_0^4 =$$

$$= \frac{4\sqrt{4^3}}{3} - 4^3/12 - (0) = \frac{16\sqrt{4}}{3} - \frac{64}{12} = \frac{16\sqrt{4}}{3} - \frac{16}{3} = \frac{16(\sqrt{4}-1)}{3} \cong 5'33 \ u^2.$$

Ejercicio 3, Opción B, Modelo 6 de 2012.

Considera el sistema de ecuaciones $\begin{cases} x + y + kz = 1 \\ 2x + ky = 1 \\ y + 2z = k \end{cases}$

- (a) [1 punto] Clasifica el sistema según los valores del parámetro k.
- (b) [0.75 puntos] Resuélvelo para k = 1.
- (c) [0'75 puntos] Resuélvelo para k = -1.

Solución

(a)

Clasifica el sistema según los valores del parámetro k.

La matriz de los coeficientes del sistema es $A = \begin{pmatrix} 1 & 1 & k \\ 2 & k & 0 \\ 0 & 1 & 2 \end{pmatrix}$ y la matriz ampliada $A^* = \begin{pmatrix} 1 & 1 & k & 1 \\ 2 & k & 0 & 1 \\ 0 & 1 & 2 & k \end{pmatrix}$.

Si $det(A) = |A| \neq 0$, $rango(A) = rango(A^*) = 3 = n^\circ$ de incógnitas. El sistema es compatible y determinado y tiene solución única.

$$|A| = \begin{vmatrix} 2 & k & 0 \\ 0 & 1 & 2 \end{vmatrix}$$
 tercera = $(0) - (1)(-2k) + (2)(k-2) = 2k + 2k - 4 = 4k - 4 \neq 0$,

Resolviendo la ecuación 4k - 4 = 0 =, obtenemos k = 1.

Si $k \neq 1$, $det(A) = |A| \neq 0$, $rango(A) = rango(A^*) = 3 = n^o$ de incógnitas. El sistema es compatible y determinado y tiene solución única.

Resuélvelo para k = 1.

Si **k = 1** tenemos A =
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
 y A* = $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix}$.

En A como
$$\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$
, tenemos rango(A)=2

En A^{*} como
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$
 = 0, por tener dos columnas iguales, tenemos rango(A^{*}) = 2. Como rango(A) = 2 =

 $rango(A^*)$ = 2, el sistema es compatible e indeterminado y tiene infinitas soluciones.

Como el rango es 2, sólo necesitamos dos ecuaciones; la 2ª y la 3ª (con las que hemos formado el menor distinto de 0 de A).

$$2x + y = 1$$

y + 2z = 1. Tomando $z = a \in R$, tenemos y = 1 - 2a, con lo cual x = 1/2 - 1/2 + 2a/2 = a.

La solución del sistema es $(x,y,z) = (a, 1 - 2a, a) con a \in R$.

(c)

Resuélvelo para el caso k = -1.

Ya hemos visto en el apartado (a) que si $k \neq 1$, rango(A) = rango(A *) = 3. El sistema es compatible y determinado y tiene solución única.

$$x + y - z = 1$$
 $x + y - z = 1$ $x + y - z = 1$ $y + 2z = -1$ $y + 2z =$

Ejercicio 4, Opción B, Modelo 6 de 2012.

Considera el punto P(1,0, 2) y la recta r dada por las ecuaciones $\begin{cases} 2x - y - 4 = 0 \\ y + 2z - 8 = 0 \end{cases}$

(a) [1 punto] Calcula la ecuación del plano que pasa por P y es perpendicular a r.

(b) [1'5 puntos] Calcula el punto simétrico de P respecto de la recta r.

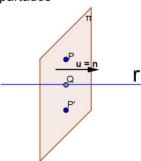
Solución

Considera el punto P(1,0, 2) y la recta r dada por las ecuaciones $\begin{cases} 2x - y - 4 = 0 \\ y + 2z - 8 = 0 \end{cases}$

(a)

Calcula la ecuación del plano que pasa por P y es perpendicular a r.

Utilizamos un mismo dibuio para los dos apartados



El plano π que pasa por P y es perpenticular a la recta "r" tiene como vector normal \mathbf{n} el vector director de la recta \mathbf{v} . El plano tiene de ecuación $\pi \equiv \mathbf{PX} \bullet \mathbf{n} = 0$, donde \bullet es el producto escalar y X es un punto generico del plano.

Un vector director \mathbf{w} lo sacamos como producto vectorial (\mathbf{x}) de los vectores normales que determinan dicha recta.

$$\mathbf{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 0 \\ 0 & 1 & 2 \end{vmatrix} = \mathbf{i}(-2) - \mathbf{j}(4) + \mathbf{k}(2) = (-2, -4, 2)$$
. Otro mas sencillo es $\mathbf{v} = (-1, -2, 1) = \mathbf{n}$

P(1,0, 2)

El plano pedido es $\pi = PX \bullet n = 0 = (x-1, y, z-2) \bullet (-1, -2, 1) = -x+1-2y+z-2 = -x-2y+z-1 = 0$ (b)

Calcula el punto simétrico de P respecto de la recta r.

Para calcular el punto simétrico de P respecto a la recta "r", calculamo el plano π que pasa por P y es perpenticular a la recta "r", ya calculado en el apartado (a) que es $\pi = -x-2y+z-1 = 0$

Calculamos el punto Q intersección perpendicular de la recta "r" con el plano π , y tenemo en cuenta que Q es el punto medio del segmento PP', siendo P' el simétrico buscado.

 $Q = r \cap \pi$

Ponemos la recta en paramétricas, par lo cual necesitamos un punto A de ella $\begin{cases} 2x - y - 4 = 0 \\ y + 2z - 8 = 0 \end{cases}$

Tomando y = 0, sale x = 2 y z = 4, El punto es A(2,0,4). Su vector director era \mathbf{v} = (-1, -2, 1).

Un punto genérico "r" es (2-b, -2b, 4+b) con $b \in R$.

Entramos en $\pi \to -(2-b) - 2(-2b) + (4+b) - 1 = 0 = b+4b+b-2+4-1 = 6b + 1 = 0$, de donde b = -1/6 y el punto Q es Q(2 - (-1/6), -2(-1/6), 4 + (-1/6)) = Q(13/6, 2/6, 23/6)

Q es punto medio del segmento PP' $\pi \rightarrow (13/6, 2/6, 23/6) = ((1+x)/2, (0+y)/2, (2+z)/2)$. Igualando:

13/6 = (1+x)/2, de donde x = 13/3 - 1 = 10/3

2/6 = (0+v)/2, de donde z = 2/3 - 0 = 2/3

23/6 = (2+z)/2, de donde z = 23/3 - 2 = 17/3

El simétrico buscado es P'(10/3, 2/3, 17/3)